Adubação de orquídeas – o que são macronutrientes e micronutrientes
Estes dias comentei com vocês como eu realizava a adubação de minhas plantas. Agora é hora de falar sobre os nutrientes propriamente ditos.
Este é um tema muito abrangente. Existem variáveis a serem consideradas que demandam dias de pesquisa e muito cuidado na escrita. Um exemplo disto é como o pH da água influencia a absorção de cada nutriente pela planta. Antes de chegarmos neste ponto, acho válido escrever um pouco sobre a importância de cada nutriente para a orquídea.
Antes de mais nada, vale lembrar que temos os seguintes macronutrientes e micronutrientes:
- Macronutrientes – nitrogênio (N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e enxofre (S);
- Micronutrientes – boro (B), cloro (Cl), ferro (Fe), manganês (Mn), molibdênio (Mo), cobre (Cu) e zinco (Zn).
De certa forma, é difícil determinar o papel de cada nutriente em uma determinada planta. Primeiro, existem coleções com milhares de plantas, cada uma com características próprias e diferentes daquela do vaso ao lado. Depois, cada elemento pode desempenhar mais de um papel para a fisiologia da planta.
Tomando como base o mais conhecido, o nitrogênio, sabemos que ele é indispensável para a síntese de proteínas. Contudo, ele também é um constituinte de fosfolipídios, de algumas vitaminas e da clorofila. Ou seja, várias funções para o mesmo nutriente. Com o agravante que não basta o nitrogênio estar ali, é necessário condições para que todos os papéis sejam realizados a contento, como a qualidade da água, quantidade e tempo de iluminação, entre outros.
Como vocês podem ver, este assunto é muito mais complexo do que apenas colocar água no regador, dosar uma medida de adubo e simplesmente regá-las.
O conhecimento dos elementos utilizados e sua função torna-se primordial para aqueles que desejam ter coleções mais vigorosas e sucesso no cultivo.
Aqui vai um resumo de cada nutriente e suas funções:
Macronutrientes
- Nitrogênio – O nitrato (N03) é a forma de nitrogênio predominantemente absorvida pela planta nas condições naturais. O nitrogênio é importante no metabolismo de compostos como aminoácidos e proteínas, amidas, amino açúcares , purinas, pirimidinas e alcaloides. Excetuando-se a água, nenhuma outra deficiência é tão dramática nos seus efeitos para a planta, quanto a de nitrogênio. A clorose geral e o estiolamento são os sintomas mais característicos da deficiência de nitrogênio na planta. O crescimento é atrasado e lento e as plantas têm aparência raquítica. O fruto é freqüentemente muito colorido. As partes mais maduras da planta são as primeiras a ser afetadas porque o nitrogênio é translocado das regiões mais velhas para as mais novas em crescimento. Por outro lado, um excesso de N no meio (solo ou solução nutritiva) faz com que a planta vegete muito, produza poucos frutos ou sementes e armazene menos carboidratos. Para complementar o que é fornecido pelo solo em quantidade insuficiente recorre-se aos fertilizantes nitrogenados; entre os naturais estão os estercos e tortas e as próprias plantas (adubo verde); entre os adubos produzidos pelo homem aparecem os amoniacais (sulfato de amônio), os nitratos (de sódio, de cálcio, de potássio) os nítrico-amoniacais (nitrato de amônio) e os amídicos (ureia).
- Enxofre – Nas condições naturais de solo é absorvido pelas raízes predominantemente como So4 2-; as plantas podem, porém, absorver também S orgânico de aminoácidos, S02 (gasoso) pelas folhas e até mesmo enxofre elementar (como S “molhável” finamente dividido) e também pelas folhas e frutos. Além de fazer parte de alguns aminoácidos e de todas as proteínas vegetais, o S desempenha outras funções: como é ativador enzimático, como SH é grupo ativo de enzimas e de coenzimas (ácido lipólico, tiamina, biotina) na fotossíntese participa da síntese da clorofila, da absorção de C02 , da atividade da carboxilase e de ribulose -2P e de reações de fosforilação; é essencial ainda no processo de fixação do N2 pelas leguminosas nodulares.
- Fósforo – Os papéis fundamentais do P na vida da planta são a sua participação nos chamados compostos ricos de energia, de que é exemplo mais comum o trio-fosfato de adenosina, ATP, produzido nas fosforilações oxidativas e fotossintéticas e, em menor grau, nas que se dão ao nível de substrato. O ATP, participa das reações de síntese e desdobramento de carboidratos (inclusive do amido), de síntese de proteínas, de síntese e desdobramento de óleos e gorduras, do trabalho mecânico, da absorção salina. Assim como o N, o fósforo se redistribui facilmente na planta, em particular quando sobrevêm a sua falta; as folhas mais velhas das plantas carentes em P mostram a princípio uma coloração verde-azulada, podendo ocorrer tonalidades roxas nelas e no caule. O fósforo é o elemento que mais limita a produção das culturas. O crescimento é reduzido e, em condições de deficiência severa, as plantas ficam anãs. Os principais fertilizantes fosfatados comerciais são os “superfosfatos” , fosfatos de amônio e nitro fosfatos. Os fertilizantes também são obtidos pela extração de rochas fosfáticas e de depósito espessos de guano (fezes de aves marinhas, ricas em fósforo, derivado do peixe da qual se alimenta).
- Potássio – O K é absorvido da solução do solo como K+ e é conduzido pela corrente transpiratória. Cerca de meia centena de enzimas são ativadas pelo K, algumas delas especificamente. O K participa em fases diversas do metabolismo: reações de fosforilação, síntese de carboidratos, respiração, síntese de proteínas. Além disso o nível de K nas células-guardas regula a abertura e o fechamento do estômato.A carência de K, prejudica o transporte de carboidrato da folha para outros órgãos da planta. A alta concentração de K nos tecidos de plantas terrestres se explica em parte pelo seu papel na regulação da viscosidade do citoplasma e pela sua baixa afinidade por ligantes orgânicos. Os sintomas de carência de K se manifesta primeiramente nas folhas mais velhas como clorose e depois necrose das pontas e das margens. O crescimento é abaixo do normal e em condições severas os ramos terminais e laterais podem morrer.
- Cálcio – É absorvido do solo como Ca 2+. O cálcio faz parte da lamela média e ativa diversas enzimas.
Desempenha outros papéis como: regulação da permeabilidade da membrana citoplasmática, neutralização de ácidos tóxicos, desenvolvimento e funcionamento de raízes, germinação do grão de pólen e desenvolvimento do tubo polínico. O transporte do cálcio no xilema está sobre controle metabólico e no floema é praticamente imóvel, em conseqüência, quando há falta desse elemento, as regiões de crescimento (gemas, ápice de raízes) são as primeiras a ser afetadas. As folhas mais novas mostram clorose e as gemas podem morrer. Em pH ácido o cálcio aparece em baixos teores no solo, elevando-se o pH e conseqüentemente neutralizando-se a acidez, aumenta-se a saturação em cálcio do solo. - Magnésio – É absorvido do solo como Mg 2+. Altas concentrações de K+ no substrato (solo ou solução nutritiva) inibem competitivamente a absorção do magnésio a ponto de causar deficiência. Por outro lado, p Mg é essencial para a absorção do P. Além de fazer parte da clorofila o Mg é ativador de enzimas que são “ativadoras de aminoácidos” , que catalisam o primeiro passo da síntese proteica Diferente do cálcio o Mg é facilmente translocado no floema para regiões novas de crescimento ativo. Como conseqüência é nas folhas mais maduras que os sintomas de deficiência primeiro aparecem sob a forma de clorose.
Micronutrientes
- Boro – Até hoje não se conseguiu isolar um composto sequer vital para a planta que contenha boro (B); do mesmo modo não se conseguiu identificar nenhuma reação crucial para o metabolismo que somente ocorra na presença deste elemento. Mesmo assim, o boro, pertence a lista dos elementos essenciais, por satisfazer o critério indireto de essencialidade. Na ausência do boro, os pontos de crescimento são afetados e podem morrer. Os tecidos parecem duros, secos e quebradiços. As folhas podem tornar-se deformadas e o caule rachado. O florescimento é afetado severamente e quando ocorre a frutificação estes freqüentemente apresentam sintomas semelhantes aos encontrados no caule. O B é essencial para a formação da parede celular, para a divisão e aumento no tamanho das células, para o funcionamento da membrana citoplasmática. A presença do boro facilita, ainda,o transporte dos carboidratos. Da mesma forma que o Ca é praticamente imóvel no floema e por isso quando há deficiência a gema terminal morre e as folhas mais novas se mostram menores, amareladas e muitas vezes deformadas. A matéria orgânica constitui a fonte imediata de boro para as plantas, libertando o elemento no processo de sua mineralização.
- Cloro – O Cl não entra na constituição de nenhum composto orgânico tido como essencial. É necessário para a fotólise da água. Os sintomas de sua deficiência causa murchamento, bronzeamento e necrose em folhas de muitas espécies, tendo sido pela primeira vez demonstrado os sintomas de sua de sua deficiência em plantas de tomate. Não se conhece no campo a ocorrência da falta de cloro, o que, pelo menos em parte, é devido à precipitação do “sal cíclico”, isto é, cloreto de sódio que o vento traz do mar e a chuva deposita no solo em quantidade suficiente para atender as necessidades da planta.
- Cobre – É absorvido como Cu +2. Não é redistribuído apreciavelmente pelo floema e por isso os sintomas de carência se mostram primeiramente nas folhas novas: murchamento, cor verde-azulada, deformação do limbo e depois clorose e necrose em manchas irregulares. É ativador de enzimas de óxido-redução que oxidam fenóis e que participam do transporte de elétrons na respiração e fotossíntese. Tem participação indireta na fixação do N2.
- Ferro – As plantas absorvem o ferro do solo na forma bivalente, Fe +2. No xilema o Fe encontra-se principalmente como quelato do ácido cítrico. Não se distribui pelo floema: o sintoma típico de falta de ferro é uma clorose das folhas novas cujas nervuras formam uma rede fina é verde contra o fundo verde-amarelado do limbo.
Além de ser componente estrutural de citocromos o ferro ativa enzimas ou faz parte de coenzimas que entram em reações as mais diversas da planta: formação da clorofila, transporte eletrônico na fotossíntese, fixação do N2, desdobramento da H2O e síntese proteica. - Manganês – Além de ativar enzimas muito diversas, o manganês participa do transporte eletrônico na fotossíntese e é essencial para a formação da clorofila e para a formação, multiplicação e funcionamento dos cloroplastos.
- Molibdênio – É o micronutriente menos abundante no solo e que na planta aparece em menor concentração. O molibdênio está diretamente ligado ao metabolismo do N. A carência de molibdênio se manifesta como amarelecimento das folhas seguido do enrolamento do limbo.
- Zinco – O zinco é necessário para a síntese de triptofana que depois de várias reações, produz o ácido indolilacético (AIA), além disso o zinco regula a atividade da ribonuclease que hidrolisando o RNA, causa diminuição na síntese proteica A carência de zinco provoca o encurtamento dos nós em algumas plantas. O florescimento e a frutificação podem ser muito reduzidos e a planta inteira pode se tornar anã e deformada.
Claro que existem outros elementos a serem considerados nesta salada da tabela periódica. Da mesma forma, algumas plantas podem não necessitar de um ou mais elementos já listados acima.
Um exemplo disto é o sódio, normalmente não exigido por plantas verdes, mas extremamente necessário para certas plantas halófitas (terrestres adaptadas a viver perto do mar).
Em um outro exemplo, o selênio é geralmente tóxico as plantas. Entretanto, certas plantas em solos ricos nesse elemento, não somente acumulam e toleram altas concentrações mas podem até ter uma certa necessidade dele.
Como podemos notar, cada planta tem sua necessidade. Muitos orquidófilos não costumam adubar suas plantas e elas estão lindas. Eu mesmo não o fazia até pouco tempo atrás. Mas depois que comecei a fornecer estes elementos a elas, notei uma grande melhora em sua fisiologia e também nas floradas.
Cabe a cada um decidir a melhor forma de conduzir sua coleção.
Nos próximos textos sobre adubação, irei comentar a influencia do cloro presente na água quando irrigamos nossas plantas e em que o pH influencia neste processo.
Referência
- portalsaofrancisco.com.br
Abraços!